Thermal, mechanical and viscoelastic properties of compatibilized polypropylene/multi-walled carbon nanotube nanocomposites

Author:

Borovanska Irena1,Kotsilkova Rumiana2,Pradas Manuel Monleón3,Vallés-Lluch Ana3,Djoumaliisky Strashimir1

Affiliation:

1. Department of Physico-Chemical Mechanics, Institute of Mechanics – BAS, Acad. G. Bonchev St., Bl. 4, Sofia, Bulgaria

2. Department of Fluid Mechanics, Institute of Mechanics – BAS, Acad. G. Bonchev St., Bl. 4, Sofia, Bulgaria

3. Centro de Biomateriales e Ingeniería Tisular, Universitat Politécnica de Valencia, Juan de la Cierva 3, Valencia, Spain

Abstract

Polymer composites containing nanofillers are among the most promising research fields for advanced materials. Carbon nanotubes (CNTs) are considered an ideal inclusion for polymer nanocomposites due to superior electrical, thermal, and mechanical properties which can be explained with the unique atomic structure of the nanotubes. Multi-walled carbon nanotubes (MWCNTs) are used as extremely strong nano-reinforcements for composites to produce a new generation of fiber-reinforced plastics with better application properties. In this experimental study, PP/MWCNT polymer nanocomposites with nanofiller concentrations in the range of 0.05–1 wt% MWCNT and the maleic anhydride amount from 0 to 7.5 wt% were investigated. An experimental study is conducted to examine the influence of MWCNT and compatibilizer contents on the thermal, mechanical, and viscoelastic properties of polypropylene (PP)/MWCNT nanocomposites. Extruded samples are characterized by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and microindentation tests. Standard Berkovich indentation test determined by residual surface impression method based on load–displacement curves was used. DSC results show an increase in the crystallization temperature of maleinated PP with the increase of MWCNT contents proving the nucleation effect of CNTs. DMTA results prove the good modification properties of maleic anhydride in MWCNT/PP nanocomposites at 0.05 wt% nanotubes concentration. Elastic moduli, obtained from both DMTA and microindentation, are compared to investigate the difference between surface and bulk mechanical properties of nanocomposites with increasing nanotubes concentration. Measured values of elastic moduli are within comparable ranges, but the absolute values are different.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3