Fault diagnosis of horizontal centrifugal pump orifice ring wear and blade fracture based on complete ensemble empirical mode decomposition with adaptive noise-singular value decomposition algorithm

Author:

Bin Lin12ORCID,Rongsheng Zhu12,Qian Huang23,Yongyong Zhang23,Qiang Fu12,Xiuli Wang12

Affiliation:

1. National Research Center of Pumps, Jiangsu University, Zhenjiang, China

2. Joint Laboratory of Intelligent Diagnosis Operation and Maintenance of Nuclear Power Pumps and Devices, Zhenjiang, China

3. China Nuclear Power Engineering Co., Ltd., Beijing, China

Abstract

Horizontal centrifugal pump orifice ring wear and blade fracture failure will not only affect the hydraulic performance but also affect the safety and stability of the whole unit. In this paper, the horizontal centrifugal pump orifice ring wear and blade fracture failure are studied, and carry out condition monitoring and fault identification through the vibration signal under the failure. Combined with the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Singular Value Decomposition algorithm of adaptive noise, a vibration feature extraction method of horizontal centrifugal pump based on intrinsic mode singular value is proposed. Through the BP neural network, based on the time domain, frequency domain, wavelet packet-AR spectrum, and intrinsic mode singular value characteristics of single-point and double-point vibration, the identification model is constructed and the identification effect is compared. The research shows that the vibration feature recognition effect of CEEMDAN-SVD decomposition is verified based on BP neural network model, and the BP neural network is improved by Particle Swarm Optimization to further improve the recognition effect and speed, which provides the diagnosis model for the design of subsequent diagnosis system.

Funder

The National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3