Identification of parameters of Maxwell and Kelvin–Voigt generalized models for fluid viscous dampers

Author:

Greco Rita1,Marano Giuseppe C2

Affiliation:

1. DICATECH, Technical University of Bari, Italy

2. DICAR, Technical University of Bari, Italy

Abstract

Fluid viscous dampers have been widely applied to reduce the effects of vibrations in civil engineering structures. A good understanding of the dynamical behavior of these devices is required to analyze structures equipped with fluid viscous dampers. The simple Kelvin–Voigt and Maxwell rheological models do not have enough parameters to suitably capture the frequency dependence of device parameters, so other models representing some generalizations of the basic Kelvin–Voigt and Maxwell models have been developed. This paper deals with parameter identification for basic and generalized Kelvin–Voigt and Maxwell models for fluid viscous dampers. The identification procedure gives the best mechanical parameters by minimizing a suitable objective function that represents a measure of difference between analytical and experimental applied forces. For this purpose, the particle swarm optimization is adopted. Results are obtained under various test conditions, comparing the agreement of various models with experimental data. Finally, a numerical investigation is performed on a simple one degree of freedom structure, equipped with fluid viscous dampers and subject to a real seismic motion.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3