Vibration suppression of sprayer boom structure using active torque control and iterative learning. Part II: Experimental implementation

Author:

Tahmasebi Mona1ORCID,Gohari Mohammad2ORCID,Mailah Musa3,Abd Rahman Roslan3

Affiliation:

1. Agricultural Engineering Research Department, Markazi Agricultural and Natural Resources Research and Education Centre, Agricultural Research, Education and Extension Organization (AREEO), Arak, Iran

2. Faculty of Mechanical Engineering, Arak University of Technology, Arak, Iran

3. Department of Applied Mechanics and Design, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia

Abstract

The most common technique of protecting crops from diseases is by applying a chemical process whereby a mixture of chemicals and water are sprayed onto the crops via a sprayer. Nowadays, modern sprayers are generally implemented to suspension systems for reducing the unwanted vibration of the spray boom structure to improve the uniformity of spray distribution in the agricultural field environment. This paper serves to present a new alternative to address and resolve the vibration control problem of the moving sprayer structures. The application of an active torque control (ATC) method to cancel the undesired vibration of the sprayer boom is thus proposed. As a continuation from Part I that deals with the modeling and simulation aspect, Part II explains the practical facet of the study through the implementation of ATC and iterative learning (ATCAIL) control scheme to an experimental spray boom structure as a basis to validate the effectiveness and robustness of the scheme as simulated and described at length in Part I. A sprayer boom suspension system test rig was specifically designed and developed to verify this control scheme that was principally chosen due to its ease of implementation through the exploitation of simple proportional–integral–derivative (PID), ATC and iterative learning algorithms. The system performance was evaluated and compared to the PID and ATC–PID control schemes for benchmarking. The results demonstrate the capability of the practical ATCAIL scheme to improve the vibration suppression in both time and frequency domains, thereafter guaranteeing a more uniform spray distribution of chemicals on a bumpy terrain. The experimental outcomes are in good agreements with the simulation counterpart.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3