Pendulation Reduction on Small Ship-Mounted Telescopic Cranes

Author:

Masoud Ziyad N.,Daqaq Mohammed F.,Nayfeh Nader A.1

Affiliation:

1. Department of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Abstract

Small ship-mounted telescopic cranes are used to load and unload cargo of limited size and weight. The wave-induced motions of the crane ship can cause large pendulations of the hoisted payload bringing the transfer operations to a complete halt. The small size of such a crane, combined with its limited maneu-verability, compared to the relatively larger motion of the host ship, poses a serious control challenge. In this work, a nonlinear control system is introduced which reduces pendulations on these cranes to the point where the transfer operations do not pose a dangerous working environment. Delayed position-feedback technique is used to reduce the payload pendulations. The presented control system uses the slewing, luffing, and telescopic degrees of freedom of the crane to drive the horizontal position of the boom tip. The saturation problem arising from the limited speed and motion of the crane actuators is another issue addressed by this control technique. To demonstrate the performance of the developed control system, numerical simulations are performed on a nonlinear three-dimensional mathematical model of the telescopic crane mounted on the USNS WATERS. The crane has four degrees of freedom: hoisting, slewing, luffing, and extension of the telescopic boom. In addition to its limited maneuverability, nonlinear hydraulic actuators are used for the luffing and extensional degrees of freedom.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3