Prediction of rail wear band evolution under excitation by periodic track irregularities and its influence on vehicle dynamic performance

Author:

Wen Bingguang1ORCID,Tao Gongquan1,Wen Zefeng1

Affiliation:

1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu, China

Abstract

Periodic track irregularities (PTIs) are an important and sensitive source of vehicle vibration and have attracted considerable attention from railway researchers. However, previous studies have mainly focused on the irregularities themselves, with limited investigation of how the rail wear band (RWB) generated by PTIs excitation affects vehicle responses. To assess this, a three-dimensional rail wear prediction model is developed in this study to simulate the evolution of the RWB under PTIs conditions and then the effect of RWB excitation on the vehicle dynamic performance is investigated. The results show that the spatial trace of the rail contact points generated by the PTIs also exhibits clear periodic characteristics. Accordingly, the distribution pattern of the RWB also reflects these periodic features. The excitation of the periodic rail wear band (PRWB) has a negative effect on the vehicle running stability, especially when the vehicle is traveling at speeds that induce coupling resonance, which exacerbates the consequences. As the wear level of the PRWB increases, there is also an escalation in the vibration of the carbody. Furthermore, the amplitude of the change in the wheelset balance position resulting from variations in rail profile is found to serve as an effective descriptor for characterizing the wear intensity of PRWB, and the vibration amplitude of the carbody exhibits a clear linear correlation with PRWB excitation. The research results are helpful for understanding the relationship between PRWB excitation and vehicle vibration behavior and serve as a theoretical basis for track maintenance and profile optimization.

Funder

Sichuan Science and Technology Program

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3