Affiliation:
1. Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
Abstract
The main goal of this paper is to present an automatic approach for the dynamic modeling of the oblique impact of a multi-flexible-link robotic manipulator. The behavior of a multi-flexible-link system confined inside a closed environment with curved walls can be completely expressed by two distinct mathematical models. A set of differential equations is employed to model the system when it has no contact with the curved walls (Flight phase); and a set of algebraic equations is used whenever it collides with the confining surfaces (Impact phase). In this article, in addition to the Assumed Mode Method (AMM), the Euler-Bernoulli Beam Theory (EBBT), and the Newton’s kinematic impact law, the Gibbs-Appell (G-A) formulation has been employed to derive the governing equations in both phases. Also, instead of using 3 × 3 rotational matrices, which involves lengthy kinematic and dynamic formulations for deriving the governing equations, 4 × 4 transformation matrices have been used. Moreover, for the systematic modeling of flexible multiple links through the space, two virtual links have been added to the n real links of a manipulator. Finally, two case studies have been simulated to demonstrate the validity of the proposed approach.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献