Numerical and experimental study on the damping performance of the fluid viscous damper considering the gap effect

Author:

Hu Shangtao12ORCID,Hu Renkang1,Yang Menggang1,Meng Dongliang1,Igarashi Akira2ORCID

Affiliation:

1. School of Civil Engineering, Central South University, Changsha, China

2. Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

Abstract

As a typical passive energy dissipation device, the fluid viscous damper (FVD) is widely utilized for structural vibration control. However, performance degradation in FVDs has been highlighted, particularly concerning the gap effect resulting from the imperfect installation and insufficient fluid. This study proposes three analytical models to characterize the gap property in the hysteresis behavior of FVDs, including the Gap model (G. model), the Equivalence model (E. model), and the Stiffness Degradation model (S. model). The purpose of the G. model is to reproduce the zero-force platform in the hysteresis curve. The E. model and S. model are both simplified models, aiming to consider the gap effect by altering the damping coefficient, velocity exponent, and stiffness based on the energy and maximum force equivalence principles. Shake table tests of a single-degree-of-freedom system are carried out to validate and assess the effectiveness and accuracy of these three methods. The results indicate that the gap effect will significantly degrade the vibration mitigation performance of FVDs, and hence it needs to be considered in simulations. The displacement and force obtained using the G. model under distinct loads highly correspond to the experimental results. By adopting the simplified models, satisfactory results can be derived with a lower implementation cost. Among them, the E. model is more appropriate when subjected to harmonic loads, while the S. model is suggested for cases under seismic excitations.

Funder

China Scholarship Council

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3