Effects of non-uniformity in thickness and volume fraction of nanofillers on the flutter characteristics of nanocomposite cantilever trapezoidal plates

Author:

Torabi Keivan1,Afshari Hassan2ORCID,Haji Aboutalebi Farhad1ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

2. Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran

Abstract

The aim of this work is to investigate the flutter characteristics of nanocomposite cantilever trapezoidal plates with non-uniform thickness enriched with either carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), or graphene oxide powders (GOPs) which are distributed functionally graded (FG) in the axial direction. It is assumed that the thickness of the plate and the volume fraction of the nanofillers vary in one direction from the wider clamped edge of the plate to the outer narrower free one. The modeling of the plate is done using the first-order shear deformation theory (FSDT) and the aerodynamic pressure generated by the aerodynamic pressure is modeled using the linear approximation of the piston theory. The material properties of the plate are calculated using the mixing rule (ROM) and the Halpin–Tsai model. The governing equations and boundary conditions at the clamped and free edges of the plate are derived via Hamilton’s principle. An approximate solution is applied using the differential quadrature method (DQM) to calculate the natural frequencies and the damping ratios of the plate. Numerical examples show that it is possible to find an optimal thickness variation profile that provides the greatest aeroelastic stability. It is concluded that by considering the same value for the mass fractions of the nanofillers, the highest aeroelastic stability can be attained by utilizing the GNPs as the reinforcers. It is found that to attain further improvement in aeroelastic stability, most nanofillers should be distributed near the clamped edge and away from the outer free edge.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3