Control strategy for trading off solar power and control input while rendezvous and docking

Author:

Abhijeet Abhijeet1,Kumar Tanya K2,Giri Dipak K2ORCID

Affiliation:

1. Department of Aerospace Engineering, Texas A&M University, College Station, TX, USA

2. Department of Aerospace Engineering, Indian Institute of Technology, Kanpur, India

Abstract

This paper presents a novel strategy for decoupling the attitude and orbit equations of a CubeSat for rendezvous and docking with an uncontrollable cooperative target. For computing a safe trajectory, the proposed control algorithm takes into account the solar energy received by the CubeSat. The CubeSat is equipped with a thruster for orbit maneuvers, magnetic coils for attitude control, and four fixed single-sided rectangular solar panels. The coupled dynamics arising from the dynamical model of the spacecraft is solved using a novel weighted vector-based approach. This paper presents a linearized nonlinear optimal control problem arising in small spacecrafts while trying to maximize solar energy input in the rendezvous and docking process. An intermediate orbit is defined and used to divide the problem into two different optimal control problems: rendezvous optimization and docking optimization problems. A geometrical approach based on the shape of the chaser and the target is contemplated for collision avoidance while docking. The proposed controller design is modified whenever the sunlight is obstructed by the Earth, and the maneuvering controls are redesigned accordingly for optimal rendezvous and docking. Numerical simulations have been carried out to show the efficacy of the proposed concept for steering the trade-off between solar energy and control input during the rendezvous and docking of CubeSat with a tumbling target.

Publisher

SAGE Publications

Reference26 articles.

1. Hofer RR, Lobbia RB, Jorns BA, et al. Performance of the H 9 magnetically shielded Hall thrusters IEPC-2017-239. Available from: https://pepl.engin.umich.edu/pdf/IEPC-2017-239.pdf (2017).

2. Optimization of solar cell performance

3. Optimizing photovoltaic conversion of solar energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3