Quadrotor aircraft intelligent system identification experiment design

Author:

Alabsi Mohammed1,Fields Travis2ORCID

Affiliation:

1. Department of Mechanical Engineering, Pennsylvania State University, Erie, USA

2. Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, Kansas City, USA

Abstract

Aircraft prototyping and modeling is usually associated with resource expensive techniques and significant post flight analysis. The NASA Learn-To-Fly concept targets the replacement of the conventional ground-based aircraft model development and prototyping approaches with an efficient real time paradigm. The work presented herein describes the development of an intelligent excitation input design technique that determines excitation frequencies based on predefined rotational motion dynamic model. The input design is then evaluated on quadcopter unmanned aircraft that utilizes the new multisine input design. In order to minimize flight excursions without compromising the modeling capabilities, multisine input power spectrum is optimized based on the vehicle’s frequency response. The proposed methodology emphasizes excitation of modal frequencies which yields flight data rich information content. The generated optimized multisine input design is utilized for a quadcopter aircraft system identification and the performance is compared to conventional uniform amplitudes design. Simulation results show highly accurate model estimation in all identification results in addition to reduction of induced perturbations and power consumption. Additionally, the generated model prediction capabilities are not compromised after power spectrum optimization. Overall, the proposed technique introduces an efficient and intelligent system identification experiment design that can minimize the time and effort spent during excitation input design.

Funder

University of Missouri Research Board

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experiment design for model basin tests with a remotely operated vehicle;Ocean Engineering;2024-09

2. Evaluation of pilot and quadcopter performance from open-loop mission-oriented flight testing;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2021-03-10

3. Aircraft system identification using simultaneous quantized harmonic input signals;Bulletin of the Polish Academy of Sciences Technical Sciences;2020-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3