Sub-anaesthetic dose of propofol attenuates mechanical allodynia in chronic post-ischaemic pain via regulation of PTEN/PI3K/IL-6 signalling

Author:

Leung Siu Yi Doreen12,Meng Fei12,Liu Jingjing12,Liu Aijia Jessica123,Ng Hei Lui Lhotse12ORCID,Cheung Chi Wai12,Sau Ching Wong Stanley12ORCID

Affiliation:

1. Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China

2. Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, University of Hong Kong, Hong Kong, China

3. Department of Neuroscience, City University of Hong Kong, Hong Kong, China

Abstract

Background: Propofol is an intravenous anaesthetic drug that has been shown to reduce inflammatory pain. Complex regional pain syndrome (CRPS) type I is a pain condition characterized by autonomic, motor and sensory disturbance. The chronic post-ischaemic pain (CPIP) model is a well-established model to recapture CRPS-I syndromes pre-clinically by non-invasive ischaemic-reperfusion (IR) injury. In this study, we investigated the analgesic effects of propofol and underlying mechanisms in mitigating CRPS pain using the CPIP model. Methods: Sub-anaesthetic dose of propofol (25 mg/kg) was intravenously delivered to the CPIP model and sham control. Nociceptive behavioural changes were assayed by the von Frey test. Molecular assays were used to investigate expression changes of PTEN, PI3K, AKT and IL-6 underlying propofol-mediated analgesic effects. Pharmacological inhibition was applied for PTEN/PI3K/AKT pathway manipulation. Results: Both pre- and post-operative administration of propofol attenuated mechanical allodynia induced by CPIP. Propofol could modulate PTEN/PI3K/AKT signalling pathway by increasing active PTEN and reducing phosphorylated PI3K, phosphorylated AKT and IL-6 expression in the spinal dorsal horn, which promoted pain relief in the CPIP model. Inhibition of PTEN with bpV abolished the analgesic effects produced by propofol in CPIP mice. Conclusion: Sub-anaesthetic dose of propofol administration resulted in the activation of PTEN, inhibition of both PI3K/AKT signalling and IL-6 production in the spinal cord, which dramatically reduced CPIP-induced pain. Our findings lay the foundation in using propofol for the treatment of CRPS with great therapeutic implications.

Funder

University of Hong Kong

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3