Dynamics of the Pulpo-Dentin Complex

Author:

Pashley D.H.1

Affiliation:

1. Department of Oral Biology, School of Dentistry, Medical College of Georgia, Augusta, Georgia 30912-1129, USA

Abstract

Dentin has a relatively high water content due to its tubular structure. Once dentin is exposed, this intratubular water is free to move in response to thermal, osmotic, evaporative, or tactile stimuli. Fluid shifts across dentin are thought to cause sufficient shear forces on odontoblasts, nerve endings, nearby fibroblasts, and blood vessels to cause significant mechanical irritation, disruption, or damage, depending on the magnitude of the fluid shift. Even in the absence of fluid shifts, the water-filled tubules provide diffusion channels for noxious (i.e., bacterial products) substances which diffuse inward toward the pulp, where they can activate the immune system, provide chemotactic stimuli, cytokine production, and produce pain and pulpal inflammation. Viewed from this perspective, dentin is a poor barrier to external irritants.However, pulpal tissues react to these challenges by increasing the activity of nerves, blood vessels, the immune system, and interstitial fluid turnover, to make the exposed dentin less permeable either physiologically, via increased outward fluid flow, or microscopically, by lining tubules with proteins, mineral deposits, or tertiary dentin, thereby enhancing the barrier properties of dentin, and providing additional protection to pulpal tissues. These reactions involve dentin and pulp, both in the initiation of the processes and in their resolution. These responses of the dental pulp to irritation of dentin demonstrate the dynamic nature of the pulpo-dentin complex.

Publisher

SAGE Publications

Subject

General Dentistry,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3