Affiliation:
1. Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, USA
Abstract
Introducing auxeticity or negative Poisson’s ratio is one potential solution to mitigate the low velocity impact damage of fiber reinforced polymer matrix composites, which can be achieved by tailoring the layup of an anisotropic composite laminate. This study aims to investigate the effect of laminate-level in-plane negative Poisson’s ratio on the low velocity impact behavior of carbon fiber reinforced polymer (CFRP) matrix composites using numerical simulations. The layups of the auxetic composites that allow them to produce negative Poisson’s ratios are identified based on the Classical Lamination Theory and verified through fundamental coupon-level experimental tests. To ensure meaningful comparisons, the non-auxetic counterpart composites are designed by allowing them to produce positive in-plane Poisson’s ratio while closely matching the longitudinal effective modulus of the auxetic laminate. The simulation results indicate that the auxetic laminates suffer smaller (12.6% on average) delamination area in top and bottom interfaces, much smaller (38% on average) matrix compressive damage in the top and bottom plies, and smaller (14.6% on average) fiber tensile damage area in each ply of the laminate at relatively higher impact energies (5 and 8 J).
Funder
National Science Foundation
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献