Stress analysis of a plain orthogonally woven textile composite under tension along the warp direction

Author:

Keith Ballard M1ORCID,Whitcomb John D1

Affiliation:

1. Department of Aerospace Engineering, Texas A&M University, USA

Abstract

A non-idealized finite element model of a plain orthogonally woven textile composite was subjected to tension along the warp direction, and the predicted stress state was investigated. The effect of refining the geometry and mesh on the volume average stresses and the percentage of each constituent at different stress levels was explored. For the particular textile architecture considered, which consisted of large reinforcement tows and complex tow cross sections, it was shown that the typical mesh refinement in the literature might suffice for volume average stresses, but a higher mesh refinement is needed to accurately capture stress concentrations. The locations of stress concentrations within each constituent were identified. For the three types of tows, [Formula: see text], transverse normal stress in the local coordinate system, in the wefts was predicted to be the most severe component of stress. For the layers of wefts that are crossed over or under by a binder, stress concentrations developed where the warps were the most distorted. Whereas, for the interior layer of wefts, stress concentrations developed where a binder came closest to the weft. In the matrix, [Formula: see text], the normal stress in the direction of the load, concentrations developed where a binder came close to a warp or weft. The locations of peak cross-sectionally averaged stresses along the tow paths were shown to match the locations of local stress concentrations. However, it was observed that many of the stress concentrations might be sensitive to the method used to create the finite element model, boundary conditions, or accounting for the variation of local fiber-volume fraction that results from a variation of cross-sectional area.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3