Understanding the role of bond point strain in the mechanical response of nonwoven polypropylene materials

Author:

Garmabi Alireza1,Elamin Mohammed A2,Bradford Philip D1,Pankow Mark2ORCID

Affiliation:

1. Department of Textile Engineering Chemistry and Science, North Carolina State University, Raleigh, NC, USA

2. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

Abstract

A method was developed to study micromechanics of a bond point in nonwoven polypropylene materials. The micromechanical behavior of the thermal bonded nonwovens was studied using the digital image correlation (DIC) technique to understand the bond points deformation during mechanical stretching. An electrospray technique was used as a fast and reliable method to create the speckle pattern on the nonwovens. Various parameters of the electrospraying and their influence on the pattern accuracy and repeatability was studied and the best pattern in terms of dot size and distribution was determined from experimentation. Plasma treatment also proved to be essential to enhance the uniform distribution and adherence of the particles on the surface. Unloaded DIC experiments were carried out and proved the accuracy of technique with errors of lower than 0.5% strain. An automated high-resolution tensile apparatus was built and loaded DIC experiments were carried out using the device. The fabric was tested in Machine Direction (MD) direction and Cross Direction (CD) directions, both showing good correlation with low errors. Average strain values in bond points were plotted against total strain in fabric and the results showed noticeable amounts of strains developed in the bond points, contradictory to most of the FEM models which consider no deformation in the bond points. Results also indicated that in MD direction deformation, bond points can experience more than 30% of the overall strain presented in the fabric.

Funder

Nonwoven’s Institute

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rate‐dependent mechanical response of polypropylene nonwovens;Journal of Applied Polymer Science;2023-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3