Characterization of exfoliated graphite nanoplatelets/polycarbonate composites: electrical and thermal conductivity, and tensile, flexural, and rheological properties

Author:

King Julia A1,Via Michael D1,Morrison Faith A1,Wiese Kyle R1,Beach Edsel A1,Cieslinski Mark J1,Bogucki Gregg R2

Affiliation:

1. Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA

2. Boeing Research & Technology, The Boeing Company, St. Louis, Missouri, USA

Abstract

Exfoliated graphite nanoplatelets (GNP) can be added polymers to produce electrically conductive composites. In this study, varying amounts (2–15 wt%) GNP were added to polycarbonate (PC) and the resulting composites were tested for electrical conductivity (1/electrical resistivity), thermal conductivity, and tensile, flexural, and rheological properties. The percolation threshold was approximately 4.0 vol% (6.5 wt%) GNP. The addition of GNP to polycarbonate increased the composite electrical and thermal conductivity and tensile and flexural modulus. The 8 wt% (5.0 vol%) GNP in polycarbonate composite had a good combination of properties for electrostatic dissipative applications. The electrical resistivity and thermal conductivity were 4.0 × 107 ohm-cm and 0.37 W/m · K, respectively. The tensile modulus, ultimate tensile strength, and strain at ultimate tensile strength were 3.5 GPa, 58 MPa, and 3.5%, respectively. The flexural modulus, ultimate flexural strength, and strain at ultimate flexural strength were 3.6 GPa, 108 MPa, and 5.5%, respectively. Ductile tensile behavior is noted in pure polycarbonate and in samples containing up to 8 wt% GNP. PC and GNP/PC composites show shear-thinning behavior. Viscosity of the composite increased as the amount of GNP increased dueto a volume-filling filler effect. The viscosity of the GNP/PC composites are well described by a Kitano-modified Maron-Pierce model.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3