Thermoplastic starch nanocomposites derived directly from cornmeal

Author:

Chen Yanlin12,Ma Qian12,Wang Ke1,Cho Mingyu12,Jiang Long12ORCID

Affiliation:

1. Department of Mechanical Engineering, North Dakota State University, Fargo, ND, USA

2. Program of Materials and Nanotechnology, North Dakota State University, Fargo, ND, USA

Abstract

A high content of water is needed in traditional thermoplastic starch (TPS) processing to plasticize the starch and facilitate the processing, which leads to relatively low strength and modulus of the products and causes the issue of product aging partially due to the gradual water loss over time. In this work, based on the results from our previous study on lignin and cellulose nanofibril-reinforced TPS composites, a low content of citric acid (<0.5 wt%) was used to replace all the added water in the prior study (∼20 wt%). Citric acid demonstrated a much stronger viscosity-reducing effect than water and enabled composite processing at a very low acid content. The resultant nanocomposites exhibited much higher strength and modulus than those containing 20 wt% water as the processing aid. Fourier transform infrared spectrometry (FTIR) results showed strong interactions between the polar groups of starch and other ingredients. Scanning electron microscopy (SEM) photos indicated the disappearance of the two-phase “sea-island” morphology, suggesting the strong compatibilization effect of the acid. To lower the cost of the nanocomposites, we further replaced the starch and zein (an expensive biopolymer) components in the original composites with low-cost cornmeal. The new nanocomposites with cornmeal as the major ingredient exhibited similar processability and mechanical properties. With its low cost and high properties, this new type of agricultural byproduct-based nanocomposites is expected to be a promising material to replace synthetic polymers in many applications.

Funder

North Dakota Corn Utilization Council

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3