Enhancing the mechanical performance of notched glass/epoxy composite laminates via hybridisation with thermoplastic fibres

Author:

Selver Erdem12ORCID,Dalfi Hussein Kommur23ORCID,Potluri Prasad2

Affiliation:

1. Department of Textile Engineering, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey

2. Robotics and Textile Composite Group, Northwest Composite Centre, School of Materials, University of Manchester, Manchester, UK

3. Department of Mechanical Engineering, Wasit University, Wasit, Iraq

Abstract

This study examines empirically and theoretically the open-hole tension and compression characteristics of thermoset composites using hybrid glass/polypropylene and glass/innegra yarns. The Abaqus software, finite element analysis (FEA) has been adopted to predict the tensile and compressive failure loads and damage failure modes for un- and notched samples under tensile and compressive strength tests. The commingling technique was used to create hybrid yarns, which were then transformed into non-crimp preforms before the infusion procedure. It was noticed that the inclusion of thermoplastic polypropylene (PP) and innegra fibres increased the ductility of yarns and composites. Densities of hybrid composites were also reduced by up to 20% when compared to pure glass/epoxy composites. Tensile and open-hole tensile (OHT) test results revealed that hybrid composites are less notch sensitive than glass/epoxy composites due to enhanced composite ductility. For glass composites, having holes resulted in a 41% decrease in tensile strength, compared to reductions of only 25% and 26% for PP and innegra fibre composites, respectively. Further, compression and open-hole compression (OHC) tests presented similar results with OHT tests whilst compressive strength reduction was lower for hybrid composites (10% and 11%) compared to glass/epoxy (28%) ones. The results of the numerical simulation for damage failure modes and tensile and compressive failure loads for un-notch and notched composite laminates are consistent with the experimental findings both qualitatively and quantitatively.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3