Characterization of relaxation behaviour of CF/PEKK aerospace composites using the time-temperature-crystallinity superposition principle

Author:

Al-Dhaheri Mariam A.1,Cantwell Wesley J.1,Barsoum Imad23,Umer Rehan1ORCID

Affiliation:

1. Department of Aerospace Engineering, Khalifa University, Abu Dhabi, UAE

2. Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, UAE

3. Department of Engineering Mechanics, Royal Institute of Technology (KTH), Stockholm, Sweden

Abstract

In this study, the Time-Temperature-Crystallinity Superposition Principle (TTCSP) was applied to determine the viscoelastic behavior of Thermo-rheological Complex Materials (TCM), specifically Carbon fibre/Poly-Ether-Ketone-Ketone (CF/PEKK) composites. The study investigated the effects of various parameters on the viscoelastic behavior of the composites, such as the degree of crystallinity after different melting temperatures, relaxation, and crystallization times. The TTCSP was utilized on the relaxation data to generate great-grand master curves for the degree of crystallinity for different laminate lay-ups. Hot press forming was employed to manufacture samples under different processing conditions, including various melting and cold crystallization temperatures. Differential Scanning Calorimetry (DSC) was employed to calculate the degree of crystallinity of CF/PEKK composites, while the Dynamic Mechanical Analyzer (DMA) was used to obtain the relaxation data. The generated great-grand master curves proved effective in predicting the relaxation behavior of the composites consolidated using single and double hold cycles at different melting temperatures and crystallization times, respectively. The great-grand master curves presented in this study can serve as valuable tool to calibrate key viscoelastic and/or thermo-viscoelastic material models for aerospace-grade CF/PEKK composites. These models are crucial for simulations aimed at predicting residual stresses and process-induced deformations during the thermoforming process.

Funder

Khalifa University of Science, Technology and Research

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3