Characteristics of in-situ automated fiber placement carbon-fiber-reinforced low-melt polyaryl ether ketone laminates part 1: Manufacturing influences

Author:

Mössinger Ines1ORCID,Raps Lukas1ORCID,Fricke Daniel1,Freund Jonathan2ORCID,Löbbecke Miriam2,Chadwick Ashley R1ORCID

Affiliation:

1. Institute of Structures and Design, German Aerospace Center (DLR), Stuttgart, Germany

2. Institute of Materials Research, German Aerospace Center (DLR), Cologne, Germany

Abstract

This study presents an investigation into mechanical and thermal properties, as well as the microstructure of Automated Fiber Placement-manufactured laminates using a novel carbon fiber-reinforced low-melt polyaryl ether ketone polymer material. The material’s lower melting temperature and lower melt viscosity as compared to established high-temperature thermoplastic materials as PEEK, promises favourable characteristics for the Automated Fiber Placement process. This work aims at in-situ consolidation and the influence of a heated tooling and a post process tempering step, which both turned out to be promising in previous investigations. Laminates were manufactured using a cold tooling, a heated tooling configuration, a cold tooling with a subsequent tempering process step and a hot-pressed reference laminate. Differential Scanning Calorimetry showed that crystallinity values more than doubled for the heated tooling and post process tempering configurations, compared to the cold tooling, reaching 24% and 30%, respectively. Mechanical strength values showed an increase in interlaminar shear strength and compression strength but did not increase to the same extent as was expected from the increase in crystallinity. With Scanning Electron Microscopy differences in the microscopic structure of the polymer matrix could be detected. While the post process tempering step leads to a mostly lamellar crystalline structure, the heated tooling configuration and the post process hot pressing induce a predominance of crystalline spherulites, which might positively affect the mechanical performance. Computed Tomography scans revealed a high amount of porosity in the in-situ-manufactured samples and unprocessed tape material, which likely mitigated the positive effect of increased crystallinity.

Funder

Horizon 2020 Framework Programme

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3