The 2023 US National Seismic Hazard Model: Subduction ground-motion models

Author:

Rezaeian Sanaz1ORCID,Powers Peter M1ORCID,Altekruse Jason1ORCID,Ahdi Sean K1ORCID,Petersen Mark D1ORCID,Shumway Allison M1ORCID,Frankel Arthur D2,Wirth Erin A2,Smith James A1ORCID,Moschetti Morgan P1ORCID,Withers Kyle B1ORCID,Herrick Julie A1ORCID

Affiliation:

1. Denver Federal Center, U.S. Geological Survey, Denver, CO, USA

2. U.S. Geological Survey, Seattle, WA, USA

Abstract

The US Geological Survey National Seismic Hazard Models (NSHMs) are used to calculate earthquake ground-shaking intensities for design and rehabilitation of structures in the United States. The most recent 2014 and 2018 versions of the NSHM for the conterminous United States included major updates to ground-motion models (GMMs) for active and stable crustal tectonic settings; however, the subduction zone GMMs were largely unchanged. With the recent development of the next generation attenuation-subduction (NGA-Sub) GMMs, and recent progress in the utilization of “M9” Cascadia earthquake simulations, we now have access to improved models of ground shaking in the US subduction zones and the Seattle basin. The new NGA-Sub GMMs support multi-period response spectra calculations. They provide global models and regional terms specific to Cascadia and terms that account for deep-basin effects. This article focuses on the updates to subduction GMMs for implementation in the 2023 NSHM and compares them to the GMMs of previous NSHMs. Individual subduction GMMs, their weighted averages, and their impact on the estimated mean hazard relative to the 2018 NSHM are discussed. The updated logic trees include three of the new NGA-Sub GMMs and retain two older models to represent epistemic uncertainty in both the median and standard deviation of ground-shaking intensities at all periods of interest. Epistemic uncertainty is further represented by a three-point logic tree for the NGA-Sub median models. Finally, in the Seattle region, basin amplification factors are adjusted at long periods based on the state-of-the-art M9 Cascadia earthquake simulations. The new models increase the estimated mean hazard values at short periods and short source-to-site distances for interface earthquakes, but decrease them otherwise, relative to the 2018 NSHM. On softer soils, the new models cause decreases to the estimated mean hazard for long periods in the Puget Lowlands basin but increases within the deep Seattle portion of this basin for short periods relative to the 2018 NSHM.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3