Modelling of the Through-air Bonding Process

Author:

Hossain M.1,Acar M.2,Malalasekera W.2

Affiliation:

1. School of Engineering, The Robert Gordon University, Aberdeen, UNITED KINDOM

2. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, UNITED KINGDOM

Abstract

A computational fluid dynamics (CFD) modelling of the through-air bonding process of nonwoven fabric production is reported in this article. In the through-air process, hot air is passed through the fibrous web to heat and melt polymer fibers. Molten polymer subsequently flows to the point of contact between any two fibers to produce a bond. Two different modelling strategies are adapted to produce a comprehensive understanding of the through-air bonding process. In macroscale modelling, a CFD model is developed treating the whole web as a porous media in order to investigate the effect of process parameters. Results reveal that the time required to heat and melt the fibers decreases with the increasing porosity of the web and the velocity of hot air. The CFD modelling technique is then used to analyze the bonding process at a more fundamental level by considering the bonding of individual fibers at microscale. The effects of the fiber diameter, bonding temperature and contact angle between two fibers on the bonding time are investigated. Results show that the time required to bond fibers is weakly related to bonding temperature and fiber diameter. Fiber orientation angle, on the other hand, has significant effect on the progression of bond formation.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3