Numerical study on the effect of different internal angled ribs on the external film cooling performance

Author:

Cheng Xiang1ORCID,Yu Qiu-Nan1,Ji Wen-Tao1ORCID,Wu Jun-Mei2,He Ya-Ling1,Tao Wen-Quan1

Affiliation:

1. Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China

2. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China

Abstract

For the blades of gas turbine, the traditional internal ribs have a great impact on the film cooling heat transfer of blade external surface. In this study, SST k-ω turbulence coupled with transition model is adopted to study the effects of angled ribbed passages on external flow and heat transfer characteristics. The detailed flow characteristics were analyzed for two vertically placed flat-plate channels with the blowing ratios of 0.5∼2. The computational model includes a single film hole ( D = 20 mm) with a jet angle of 35°. Four different rib orientations in the secondary flow channels are designed. They are no rib, oblique rib 1 (30° angle from the horizontal line), oblique rib 2 (symmetrical to oblique rib 1), and straight rib. Compared with ribless channel, the average adiabatic film cooling effectiveness of straight rib, Oblique rib 1, Oblique rib 2 are 2.3, 2.2, and 1.9 times higher at different Reynolds numbers, respectively. Taking the film hole as the origin, Oblique rib 2 can greatly improve the overall cooling effectiveness. Oblique rib 1 can improve the cooling effectiveness of the farther downstream wall surface. The comparison of film cooling efficiency, coolant coverage area, flow behavior inside the film hole and that in the downstream, heat transfer and transition behavior for different channels are also analyzed separately. Through the investigations, it helps to understand the effects of internal rib angle on the flow, friction factor and heat transfer outside the film holes.

Funder

National Science and Technology Major Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3