Affiliation:
1. Key Laboratory for Power Machinery and Engineering of M. O. E, Shanghai Jiao Tong University, Shanghai, P.R. China
Abstract
Abundant alcohols, including ethanol, propanol, butanol, and pentanol, are expected to be used in compression ignition engines to ease the shortages of fossil fuel. The various alcohols have quite a different combustion and emission characteristics in the engine due to the changes in molecular structures. In this paper, a series of experiments were conducted on a modified common-rail diesel engine fueled with diesel/alcohols blended fuels in a wide operating range. The effects of alcohol chain length, oxygen content, and molecular structure on engine combustion and emission characteristics are studied systematically. The experimental results show that the blending of alcohols increases the peak values of in-cylinder pressure and maximum pressure rising rate. Besides, the combustion duration and ignition delay are mainly affected by oxygen content and isomer structure. The addition of short-chain alcohols will significantly reduce the total mass of particulate matter (PM) emissions, while the CO and HC emissions increase appropriately. The CO, HC, aldehydes, and ethylene emissions are mainly affected by carbon chain length and isomer structure. For PM emissions, the carbon chain length, molecular structure, and oxygen content of alcohol fuels have different influences on PM number, PM mass, and particle size distributions. The shorter carbon chain of alcohol leads to smaller particle size, and higher oxygen content leads to lower total particle mass.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献