Experimental optimization of cutting conditions to improve surface roughness of aeronautic parts made of Fe-Ni alloys

Author:

Frih Ahmed Seifallah12,Ftoutou Ezzeddine1ORCID,Khalifa Ated Ben1ORCID,Trigui Moez1

Affiliation:

1. Mechanical Engineering Laboratory of Monastir, National Engineering School of Monastir, Univesity of Monastir, Tunisia

2. Nexteam Machining Sousse, Tunisia

Abstract

Fe-Ni alloys present excellent heat resistance properties while preserving their rigidity, strength, toughness, and dimensional stability at high temperatures. As a result, they are widely used in manufacturing aerospace or aeronautic parts where the operating temperature is very close to their melting temperature. Supra50 (named in the Unified Numbering System UNS as K94800) is a Fe-Ni alloy currently used in space and aviation industries, which confirmed its efficiency. However, improving the surface roughness of this high-precision part is challenging to overcome in manufacturing. The main objective of this study is to carry out an experiment based on a factorial plan and aims to predict the surface roughness of Supra50 parts as a function of cutting parameters in a milling process. Results show that the best combination of cutting parameters, giving the best surface roughness, is obtained at the lowest value of feed per tooth. Results also show that cutting speed and radial depth have little effect on roughness quality.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3