Effects of roughing, finishing, and aggressive machining conditions on the milling performance of AISI 1045 steel using TiAlN coated inserts

Author:

Rajput S S1,Upadhyay C2ORCID,Gangopadhyay S1ORCID,Fernandes F34ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Bhilai, Raipur, Chhattisgarh, India

2. Department of Mechanical Engineering, National Institute of Technology Rourkela, Odisha, India

3. CEMMPRE - Centre for Mechanical Engineering Materials and Processes, Department of Mechanical Engineering, University of Coimbra, Coimbra, Portugal

4. ISEP - School of Engineering, Polytechnic of Porto, Porto, Portugal

Abstract

The objective of the present study is to develop a better understanding of machining performance of TiAlN coated tools during face milling of AISI 1045 medium carbon steel. The influences of three different cutting conditions (roughing, finishing, and aggressive conditions) were investigated on cutting forces, chip temperature, tool wear, surface roughness, and chip characteristics. The highest cutting forces were obtained under roughing condition, while, aggressive mode of machining (high values of cutting speed, feed, and depth of cuts) resulted in the highest chip temperature, crater, and flank wear. Material adhesion and coating delamination were predominant under roughing condition. On the other hand, aggressive condition exhibited diffusion wear causing large depth of crater and severe thermal cracks leading to fracture of the cutting edge. Attrition and abrasion wear were also evident. The results of cutting forces, chip temperature, surface roughness, and chip characteristics were correlated with those of tool wear. Results were found to be beneficial in recommending appropriate criteria for choosing different cutting conditions in face milling of AISI 1045 steel using TiAlN coated insert.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3