Influence of rotational speed on mechanical features of thermally drilled holes in dual-phase steel

Author:

Kumar R1ORCID,Hynes N Rajesh Jesudoss2

Affiliation:

1. Department of Mechanical Engineering, Vels Institute of Science, Technology & Advanced Studies, Chennai, India

2. Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India

Abstract

Thermal drilling is a novel chipless sheet metal drilling process that uses a rotating thermal drill tool to pierce and form a bushing shape hole. In this work, thermal drilling process is successfully employed to drill the DP 600 grade–type galvanized steel with a thickness of 2 mm. The influence of different spindle rotational speeds such as 1600, 2000 and 2400 r/min on the formation of bushing height, surface roughness, microhardness and microstructure of the thermal-drilled holes are investigated in detail. Process parameters such as feed rate, thermal drill angle and workpiece thickness were held constant in order to explore the influence of rotational speed on the quality characteristics of the thermal drilling process. It has been found that the bushing height was improved with increasing of rotational speed, but the petal formation at the outer edge of the bush is decreased. Surface roughness tests indicate that the better surface quality drilled hole could be obtained at the highest rotational speed of 2400 r/min. The microstructural investigation confirmed that a new result of Lüders band marks was formed inside the thermal-drilled holes because high thermal stress and yielding of galvanized steel material.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3