Analysis and prediction of tool wear in dry turning of hardened D3 steel using hybrid insert: A novel wear map approach

Author:

Rath Debabrata12,Panda Sumanta3ORCID

Affiliation:

1. Department of Manufacturing Engineering and Technology, Central Institute of Petrochemicals Engineering and Technology: Institute of Petrochemicals Technology, Bhubaneswar, Odisha, India

2. Department of Production Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, India

3. Department of Mechanical Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, India

Abstract

Previously cubic boron nitride (CBN) and ceramic inserts were used for the dry turning of heat-treated D3 tool steel with cutting speed beyond 200 m/min, suffers from severe tool wear and generation of high temperature at the interface. To overcome these shortcomings, a hybrid ceramic insert that is, Al2O3 + Ti (C,N) with coated (TiN) is used in dry turning of D3 tool steel (heat-treated). Use of the hybrid insert with a lower feed rate (0.04 mm/rev) and a minimum depth of cut (0.4 mm) improves the surface quality of the turning process by significantly reducing the tool wear and cutting forces requirement in a cutting speed range of 165– 175 m/min. Even though ceramic tool inserts have high wear resistance at elevated temperatures but it has limited impact strength. So, ceramics is only recommended for shocks and vibration-free high-speed cutting operations of hardened steel under a dry environment. The novelty of this article is the development of a wear map for the analysis and prediction of tool wear. The Scanning electron microscope studies of wear region elucidate that low tool wear that the predominant modes of wear for low tool wear cutting conditions are delamination and abrasion. Besides for higher tool wear the prevailing wear mode is a combination of abrasion as well as adhesion wear. It is perceived that our proposed methodology outperforms the state-of-the-art methods.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3