Effect of Stillage Pretreatment During a Coupled Scoria-Supported Anaerobic Digestion Followed by Aerobic Degradation

Author:

Gebreeyessus Getachew Dagnew12ORCID,Mekonnen Andualem3,Chebude Yonas4,Asaithambi Perumal5ORCID,Sreekrishnan Trichur Ramaswamy1,Alemayehu Esayas5

Affiliation:

1. Africa Center of Excellence for Water Management, Addis Ababa University, Addis Ababa, Ethiopia

2. Department of UEM, Kotebe Metropolitan University, Addis Ababa, Ethiopia

3. Center for Environmental Sciences, Addis Ababa University, Addis Ababa, Ethiopia

4. Department of Chemistry, Addis Ababa University, Addis Ababa, Ethiopia

5. Department of Water Supply Environmental Engineering, Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia

Abstract

The objective of this study was to evaluate the treatment efficiency of a coupled stillage anaerobic digestion, which was performed in scoria-packed continuous reactors and following aerobic degradation. The optimum organic loading rate was determined for the continuous anaerobic digestion of a molasses ethanol distillery stillage with and without wet air feed pretreatment. The pretreatment of the molasses ethanol distillery stillage brought a significantly higher chemical oxygen demand removal in anaerobic digestion with an increased loading rate of 2000 mg/L d when compared with the raw stillage. The results also showed a complete removal of the biological oxygen demand following the coupling of anaerobic digestion with aerobic degradation. During the later stillage aerobic treatment, 68% of the chemical oxygen demand was removed within 8 hours of retention time. Despite the color, the removal of organics in stillage due to integrating wet air pretreatment, continuous anaerobic digestion, and aerobic degradation was successful. The pretreatment and hybrid technique also appears as a promising technique toward the sustainable management of stillage, thereby meeting discharge limit set for the ethanol industry by regulators.

Publisher

SAGE Publications

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3