A virtual myoelectric prosthesis training system capable of providing instructions on hand operations

Author:

Nakamura Go12,Shibanoki Taro3,Kurita Yuichi2,Honda Yuichiro1,Masuda Akito4,Mizobe Futoshi5,Chin Takaaki15,Tsuji Toshio2

Affiliation:

1. Robot Rehabilitation Center in The Hyogo Institute of Assistive Technology, Kobe, Japan

2. Hiroshima University, Higashihiroshima, Japan

3. Ibaraki University, Hitachi, Japan

4. Kinki Gishi Corporation, Kobe, Japan

5. Hyogo Rehabilitation Center, Kobe, Japan

Abstract

This article proposes a virtual hand and a virtual training system for controlling the MyoBock—the most commonly used myoelectric prosthetic hand worldwide. As the virtual hand is controlled using the method also adopted for the MyoBock hand, the proposed system provides upper-limb amputees with operation sensibilities similar to those experienced in MyoBock control. It can also display an additional virtual hand for the provision of instructions on hand operation, such as the recommended posture for object grasping and the trajectory desirable to reach a target. In virtual hand control experiments conducted with an amputee to evaluate the proposed virtual hand’s operability, the subject successfully performed stable opening and closing with high discrimination rates (89.3±6.65%), thanks to the virtual hand’s incorporation of the MyoBock’s operational characteristics. A training experiment using the proposed system was also conducted with eight healthy participants over a period of 5 days. The participants were asked to perform the box and block test using the MyoBock hand in a real environment on the first and final days. The results showed that the number of blocks transported in 1 min significantly increased and that the participants using the instruction virtual hand changed the orientation of the hand approaching blocks from vertical to lateral. The outcomes of the experiment indicate that the proposed system can be used to improve MyoBock hand control operation both quantitatively and qualitatively.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3