Prediction of rolling bearing performance degradation based on whale optimization algorithm and backpropagation model

Author:

Wang Jingyue12ORCID,Han Yuntong2,Wang Haotian3,Ding Jianming1,Yi Cai1

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

2. School of Automobile and Transportation, Shenyang Ligong University, Shenyang, China

3. School of Automation, Shenyang Aerospace University, Shenyang, China

Abstract

The dissertation proposes a prediction model that enhances the BP (Backpropagation) neural network using the WOA (Whale Optimization Algorithm) to address the issue of local convergence during prediction. The model optimizes the initial weights and thresholds of the network using the whale optimization algorithm, resolving the problem of BP’s local convergence. Feature data is selected using the correlation coefficient theory to obtain the model inputs. Bearing performance degradation assessment is conducted using the predicted remaining life index. The superiority of the model is validated by comparing its predictions with those of BP and LSTM prediction models.

Funder

State Key Laboratory of Traction Power

Natutal Science Foundation of Liaoning Province of China

Liaoning BaiQianWan Talents Program

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3