Thermal coupling model of a traveling flexible printing electronical membrane subjected to nonlinear electrostatical force

Author:

Ying Shudi1ORCID,Wu Jimei2,Wang Yan3

Affiliation:

1. School of Automation, Qingdao University, Qingdao, China

2. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, China

3. School of Civil Engineering and Architecture,Xi’an University of Technology, Xi’an, China

Abstract

A flexible printing electronical membrane is an electron equipment made by precisely spraying conductive metal ink such as silver on a soft membrane substrate. With its advantages of light weight and flexibility, it can adapt to changing working environments and is widely used in aerospace, wearable electronics and other fields. Nevertheless, during the manufacturing preparation of roll-to-roll printing membranes, the high-speed movement of printing electronical membranes under tension is affected by the impact of hot air from the drying oven and the electrostatic interference generated by friction in transmission, which restricts the overprint accuracy and preparation velocity of flexible electronical membranes. To address this issue, the nonlinear forced vibrational characteristics of a traveling flexible printing electronical membrane on temperature coupling subjected to nonlinear electrostatic force were investigated. The roll-to-roll printed intelligent RFID electron membrane is the research target. On the basis of the energy approach and the heat conduction equation considering the effect of deformation, the nonlinear vibrational equations of an axially traveling flexible printing electronical membrane coupled with temperature under the function of nonlinear electrostatical excitation force were derived. The Bubnov–Galerkin algorithm was applied to discretize the vibration partial differential equations; by making full use of the quartic Runge–Kutta numerical algorithm to calculate the approximate solution of equations, the phase portraits, Poincaré maps, time history diagrams, power spectra, and bifurcation plots of the nonlinear vibrations of the traveling printing electronical membrane were used to explore the effects of movement velocities, electrostatical field, and thermal coupling coefficients. The findings obtained the stable working domain and the divergence instability domain of the traveling flexible printing electronic membrane, which provided a theory fundamental for enhancing the stable craft of a printing electronical membrane.

Funder

Key Scientific Research Project of Shaanxi Provincial Department of Education

National Natural Science Foundation of China

Key Project of Shaanxi Provincial Natural Science Basic Research

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3