1. Ascheri A., Museux J.M., Wirthmann A., Giannakouris K., Karlberg M., Baldacci E. 2022. “Innovation in the European Statistical System: Recent Achievements and Challenges Ahead.”Statistical Journal of the IAOS 38 (3): 805–813. DOI: https://doi.org/10.3233/SJI-220053.
2. Bollerslev T. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.”Journal of Econometrics 31 (3): 307–327. DOI: https://doi.org/10.1016/0304-4076(86)90063-1.
3. Chen J. C., Dunn A., Hood K., Driessen A., Batch A. 2022. “Off to the Races: A Comparison of Machine Learning and Alternative Data for Predicting Economic Indicators.” In Big Data for Twenty-First Century Economic Statistics, edited by K. G. Abraham, Jarmin R. S., Moyer B. C., Shapiro M. D., 373–402. Cambridge, MA: National Bureau of Economic Research. https://www.nber.org/books-and-chapters/big-data-twenty-first-century-economic-statistics/races-comparison-machine-learning-and-alternative-data-predicting-economic-indicators (accessed March 2024).
4. Cleveland R. B., Cleveland W. S., McRae J. E., Terpenning I. 1990. “STL: A Seasonal-Trend Decomposition Procedure Based on Loess.”Journal of Official Statistics 6 (1): 3–33. https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/stl-a-seasonal-trend-decomposition-procedure-based-on-loess.pdf (accessed October 2023).
5. D’Elia E. 2014. “Predictions vs. Preliminary Sample Estimates: The Case of Eurozone Quarterly GDP.”Journal of Official Statistics 30 (3): 499–520. DOI: https://doi.org/10.2478/JOS-2014-0031.