A new approach for reliability assessment of the smart microgrids using k-shortest path algorithms

Author:

Gholami Mohammadreza1ORCID,Mohammadtaheri Meysam2,Gholami Alireza3

Affiliation:

1. Department of Electrical and Electronic Engineering, Final International University, Kyrenia, Turkey

2. Electrical Engineering Department, Zanjan University, Zanjan, Iran

3. Electrical Department, TGG Company, Tehran, Iran

Abstract

The reliability of cyber-physical microgrids (MGs) is crucial in the development of smart grids. The reliability of MGs can be affected by cyber network failures, which have a significant impact on the physical components. Since MGs have interdependent cyber and physical elements, a smart MG can be viewed as a system of n dependent two-mode components. This paper proposes an approach to finding the k most likely configurations of the system. The method involves three phases. Firstly, the multi-mode model is obtained for physical components, considering the operation and topology of the cyber network. Then, the problem is transformed to finding the k most likely state of a system consisting of n independent multi-mode components. In the second phase, a transformation using new transformed metrics is applied. This results in the problem being converted to finding the k shortest path, which can be solved using efficient algorithms. Finally, the states are evaluated using a DC load flow, and reliability indices such as loss of load probability (LOLP) and expected energy not supplied (EENS) are calculated. Moreover, we have incorporated the dynamic thermal rating (DTR) system into our proposed model, addressing the safe enhancement of system component ratings. The results indicate that the most probable states of the system are related to the failure of distribution generators. The most severe events occur due to failure in the cyber network, and cyber network malfunction has a higher effect on EENS compared to LOLP. Additionally, we observe a significant enhancement in reliability indices when considering the DTR system over the static thermal rating (STR) system. This approach is efficient in reliability calculation using fewer system states.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3