A new universal multi-stress acceleration model and multi-parameter estimation method based on particle swarm optimization

Author:

Liu Yao1ORCID,Wang Yashun1ORCID,Fan Zhengwei1,Chen Xun1,Zhang Chunhua2,Tan Yuanyuan2

Affiliation:

1. Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China

2. Hunan Haizhi Robotics Technology Co., Ltd, Changsha, China

Abstract

High reliability and long-lifetime products usually work in multi-stress environment such as temperature, humidity, electricity, and vibration. How to evaluate the reliability of the product under multi-stress condition is an urgent problem to ensure the safe and reliable operation of the product. Accelerated test provides an efficient and feasible way; however, the existing acceleration models have some shortcomings, such as less stress type, neglecting the stress coupling, and multi-parameter estimation difficulties. Therefore, in this article, first, a new universal multi-stress acceleration model is derived based on the classical Arrhenius model. Second, a multi-parameter estimation method for multi-stress model is proposed by combining particle swarm optimization and maximum likelihood estimation. Six simulation cases are used to verify the effectiveness of the proposed multi-parameter estimation method. The results of Case 1 to Case 3 show that the maximum mean square error of five parameters in the multi-stress model without considering stress coupling is 3.71%. The results of Case 4 to Case 6 show that the maximum mean square error of nine parameters in the multi-stress model considering stress coupling is 7.69%. Finally, an application example is performed to investigate the performance of the universal multi-stress acceleration model and multi-parameter estimation method.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

national natural science foundation of china

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3