Reliability analysis of the anti-sliding of a retaining wall subjected to seismic loads

Author:

Huang Xiao-Cheng12ORCID,Xu Xiao-Di1,Chen Qiu-Nan1,Liu Yun-Fu3

Affiliation:

1. School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China

2. National Engineering Laboratory of Highway Maintenance Technology, Changsha University of Science & Technology, Changsha, China

3. Hunan Sunshine Construction Co., Ltd., Changsha, China

Abstract

Geotechnical engineering involves various types of uncertainties, as it always deals with highly variable natural materials. Reliability-based design/analysis can play at least a complementary role in the design approach. In this paper, reliability analysis of anti-sliding of retaining wall with the parameters treated as random variables is performed based on the concept of random fields. Both friction angle and cohesion of soils near the interface along the base of retaining wall are treated as Gaussian fields. The spatial correlation and cross correlation of the variables are calculated by a specific covariance function and the seismic loads act on retaining walls are also taken into account. Examples are illustrated to verify the accuracy of the proposed approach. It is found from the numerical results that the spatial correlation of shear strength has an important influence on the probability of the anti-sliding failure of retaining wall. Moreover, the numerical results obtained from the proposed method are in full agreement with those obtained from Monte Carlo simulations. Therefore, the proposed method provides a new view to study the stability of a retaining wall subjected to seismic loads.

Funder

national natural science foundation of china

National Natural Science Foundation of China

Scientific Research Projects of Hunan Education Department

Open Fund of National Engineering Laboratory of Highway Maintenance Technology

hunan university of science and technology

department of transportation of hunan province

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3