Continual learning for fault diagnosis considering variable working conditions

Author:

Wei Dongdong1,Zuo Ming Jian1ORCID,Tian Zhigang1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada

Abstract

Traditional Neural Networks (NNs) trained in a one-stage process often struggle to perform well when presented with new classes or domain shifts in testing datasets. In fault diagnosis, it is essential to handle a sequence of diagnostic tasks with new fault classes and working conditions. This paper presents a multi-staged Continual Learning algorithm that learns from a sequence of diagnostic tasks. In each training stage, a small portion of previously seen training data is incorporated to help the model remember old tasks and better learn new tasks. A novel scheme is designed to select previously seen data from multiple old tasks, considering their different working conditions. A multi-way domain adaptation is then conducted to mitigate the impact of multiple changes in working conditions among different tasks. The proposed method is tested using two different experiment test rigs, including both gear and bearing faults. Results demonstrate that the proposed Continual Learning algorithm allows NNs to learn from a sequence of diagnostics tasks efficiently and maintain high accuracies for all the tasks of interest.

Funder

Canada First Research Excellence Fund

China Scholarship Council

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3