Euxanthone Suppresses the Proliferation, Migration and Invasion of Human Medulloblastoma Cells by Inhibiting the RANK/RANKL Pathway

Author:

Xu Chengyan1,He Zixia2,Shen Zhipeng1

Affiliation:

1. Department of Neurosurgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China

2. Department of Outpatient, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China

Abstract

Background: Euxanthone is a plant-based flavonoid that is mostly isolated from a Chinese medicinal plant, Polygala caudate. This study was designed to evaluate the anticancer effects of euxanthone against human medulloblastoma cells. Materials and Methods: Cell viability was evaluated by CCK-8 and EdU assays. Apoptotic cell percentage was determined by annexin V/PI assay. The mRNA expression was determined by qRT-PCR. Wound healing and transwell assays were used to assess cell migration and invasion. Results: The results revealed aberrant activation of RANK/RANKL pathway in human medulloblastoma tissues and cell lines. Euxanthone suppressed the proliferation of the D425 medulloblastoma cells with comparatively lower cytotoxic effects against the normal human cerebellar granule cells. The IC50 of euxanthone against the D425 cells was found to be 10 µM. Interestingly, silencing of receptor activator of nuclear factor kβ (RANK) could also suppress the proliferation of the D425 cells via induction of apoptosis. Nonetheless, overexpression of RANK could abolish the cytotoxic effects of euxanthone on the D425 cells. Finally, wound-heal and transwell assay showed that euxanthone suppressed the migration and invasion of the D425 medulloblastoma cells. Conclusion: Collectively, the results revealed the anticancer effects of euxanthone against human medulloblastoma cells via RANK/RANKL pathway. These results suggest the potential of euxanthone as a lead molecule in the development of chemotherapy for medulloblastoma.

Publisher

SAGE Publications

Subject

Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3