Systematic analysis reveals distinct roles of USF family proteins in various cancer types

Author:

Liu Xia1,Wang Zhuo-Zhi2,Meng Shuai3,Zang Fenglin4,Zhang Huilai1,Wang Ju2,Chen Yong-Zi5ORCID

Affiliation:

1. Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China

2. School of Biomedical Engineering, Tianjin Medical University, Tianjin, China

3. Department of Pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China

4. Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China

5. Laboratory of Tumor Cell Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China

Abstract

Background Upstream stimulatory factors ( USFs) are members of the basic helix-loop-helix leucine zipper transcription factor family, including USF1, USF2, and USF3. The first two members have been well studied compared to the third member, USF3, which has received scarce attention in cancer research to date. Despite a recently reported association of its alteration with thyroid carcinoma, its expression has not been previously analyzed. Methods We comprehensively analyzed differential levels of USFs expression, genomic alteration, DNA methylation, and their prognostic value across different cancer types and the possible correlation with tumor-infiltrating immune cells and drug response by using different bioinformatics tools. Results Our findings established that USFs play an important role in cancers related to the urinary system and justify the necessity for further investigation. We implemented and offer a useful ShinyApp to facilitate researchers’ efforts to inquire about any other gene of interest and to perform the analysis of drug response in a user-friendly fashion at http://zzdlab.com:3838/Drugdiscovery/ .

Funder

National Natural Science Foundation of China

Tianjin Municipal Education Commission Foundation

Tianjin Municipal Science and Technology Project

Publisher

SAGE Publications

Subject

Cancer Research,Clinical Biochemistry,Oncology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3