Elevated Angiotensin-II Levels Contribute to the Pathogenesis of Open-Angle Glaucoma Via Inducing the Expression of Fibrosis-Related Genes in Trabecular Meshwork Cells Through a ROS/NOX4/SMAD3 Axis

Author:

Li Haijun1,Cui Huiling1,Ren Jing1,Wang Di1,Zhao Rumeng1,Zhu Shichao2,Liu Siqing3,Liu Xiaohui1,Tian Shuai4,Zhang Yuanyuan4,Zhao Panpan4,Li Peng5ORCID,Thorne Rick F.4,Duan Shichao1ORCID

Affiliation:

1. Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China

2. Department of Pharmacology, College of Pharmacy, Army Medical University, Chongqing, China

3. The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China

4. Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China

5. Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China

Abstract

Glaucoma including primary open-angle glaucoma (POAG) results from elevations in intraocular pressure (IOP). An eye-localized renin-angiotensin system (RAS) has been implicated in IOP regulation, although its mechanism of action and contribution to glaucoma is poorly understood. Here, we detected significant increases in the levels of angiotensin II (ANGII) in aqueous humor samples from POAG patients. Moreover, we determined that the concentrations of ANGII were positively correlated with IOP, suggesting a role for elevated ANGII levels in eye pathogenesis. Functional investigations demonstrated that ANGII induces the expression of fibrosis-related genes of transformed and primary human trabecular meshwork cells (HTMCs) through the transcriptional upregulation of key fibrotic genes. Parallel experiments using a murine periocular conjunctival fornix injection model confirmed that ANGII induces the expression of fibrosis-related genes in trabecular meshwork (TM) cells in vivo along with increasing IOP. ANGII was revealed to function through increasing the levels of reactive oxygen species (ROS) via selectively upregulating NOX4, with NOX4 knockdown or inhibition with GLX351322 alleviating fibrotic changes induced by ANGII. We further show that ANGII activates Smad3, with both GLX351322 and an inhibitor of Smad3 (SIS3) decreasing the phosphorylation of Smad3 and dampening the ANGII-induced increases in fibrotic proteins. Moreover, NOX4 and Smad3 inhibitors also partially rescued the elevated IOP levels induced by ANGII. Our collective results therefore highlight ANGII as a biomarker and treatment target in POAG together with establishing a causal relationship between ANGII and up-regulation of the expression of fibrosis-related genes of TM cells via a NOX4/ROS axis in cooperation with TGFβ/Smad3 signaling.

Funder

Henan Medical Science and technology research plan

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3