In Vitro and in Vivo Performance of Porcine Islets Encapsulated in Interfacially Photopolymerized Poly(Ethylene Glycol) Diacrylate Membranes

Author:

Cruise Gregory M.12,Hegre Orion D.3,Lamberti Francis V.3,Hager Steven R.3,Hill Ron3,Scharp David S.3,Hubbell Jeffrey A.4

Affiliation:

1. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125

2. Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712

3. Neocrin Company, 31 Technology, Suite 100, Irvine, CA 92618

4. Department of Materials and Institute for Biomedical Engineering, Swiss Federal Institute of Technology Zürich and University of Zürich, Zürich, Switzerland

Abstract

The usefulness of interfacial photopolymerization of poly(ethylene glycol) (PEG) diacrylate at a variety of concentrations and molecular weights to form hydrogel membranes for encapsulating porcine islets of Langerhans was investigated. The results from this study show in vitro and in vivo function of PEG-encapsulated porcine islets and the ability of PEG membranes to prevent immune rejection in a discordant xenograft model. Encapsulated islets demonstrated an average viability of 85% during the first week after encapsulation, slightly but significantly lower than unencapsulated controls. Encapsulated porcine islets were shown to be glucose responsive using static glucose stimulation and perifusion assays. Higher rates of insulin release were observed for porcine islets encapsulated in lower concentrations of PEG diacrylate (10–13%), not significantly reduced relative to unencapsulated controls, than were observed in islets encapsulated in higher concentrations (25%) of PEG diacrylate. Perifusion results showed biphasic insulin release from encapsulated islets in response to glucose stimulation. Streptozotocin-induced diabetic athymic mice maintained normoglycemia for up to 110 days after the implantation of 5,000–8,000 encapsulated porcine islet equivalents into the peritoneal cavity. Normoglycemia was also confirmed in these animals using glucose tolerance tests. PEG diacrylate-encapsulated porcine islets were shown to be viable and contain insulin after 30 days in the peritoneal cavity of Sprague-Dawley rats, a discordant xenograft model. From these studies, we conclude that PEG diacrylate encapsulation of porcine islets by interfacial photopolymerization shows promise for use as a method of xenoprotection toward a bioartifical endocrine pancreas.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 243 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3