CircANKRD52 Promotes the Tumorigenesis of Hepatocellular Carcinoma by Sponging miR-497-5p and Upregulating BIRC5 Expression

Author:

Zhang Mingzhi12,Yan Xinxin13ORCID,Wen Peihao4ORCID,Bai Wenkun5,Zhang Qingyu1

Affiliation:

1. Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China

2. Department of Gastroenterology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China

3. Geriatric Department, Aerospace Central Hospital, Beijing, China

4. Department of Liver Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

5. Department of Ultrasonography, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

Abstract

CircRNAs participate in the pathogenesis of a variety of cancers. Previous studies showed that baculoviral IAP repeat containing 5 (BIRC5) can promote tumor progression. But, the mechanisms by which circRNAs regulate BIRC5 expression in hepatocellular carcinoma (HCC) remain unknown. The clinical prognosis of BIRC5 or miR-497-5p expression in patients with HCC was assessed by TCGA RNA-seq dataset. hsa_circ_0026939 (circANKRD52) or BIRC5 was identified to bind with miR-497-5p by luciferase gene report, RIP and circRIP assays. MTT, colony formation, Transwell assays and a xenograft tumor model were used to estimate the role of miR-497-5p or circANKRD52 in HCC cells. As a result, we found that elevated expression of BIRC5 or decreased expression of miR-497-5p was linked to poor survival in HCC. Restored expression of miR-497-5p repressed cell proliferation, colony formation and invasiveness by targeting BIRC5, but its inhibitor showed the opposite results. Furthermore, circANKRD52 possessed a tumor-promoting effect by acting as a sponge of miR-497-5p and thereby upregulated BIRC5 in HCC cells. In conclusion, our findings demonstrated that circANKRD52 enhances the tumorigenesis of HCC by sponging miR-497-5p and upregulating BIRC5 expression.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3