Molecular characterization of physis tissue and hormonal profiles of female rats neonatally exposed to low-dose bisphenol A

Author:

Jiang Chenyan1ORCID,Gao Guanglin1ORCID,Sun Wen1,Sun Yanyan1,Yu Jian1ORCID

Affiliation:

1. Department of Integrative Medicine, Children’s Hospital of Fudan University, Shanghai, China

Abstract

Physis is a complex cartilaginous structure that is critical for longitudinal bone growth. As one of the endocrine-disrupting chemicals, bisphenol A (BPA) can interfere with the physis by deranging the complex networks of nutritional, cellular, paracrine, and endocrine factors, and this affects longitudinal bone growth, leading to different growth outcomes. However, the exact mechanisms underlying these phenomena remain unclear. Therefore, understanding the molecular pathways involved in the physis after neonatal exposure to low-dose BPA may permit the identification of research targets for therapeutics, which may aid in modulating the process of growth plate closure. In the present study, female Sprague–Dawley rats were exposed to 0.05 mg·kg−1·day−1 of BPA and corn oil vehicle from postnatal day 1 (PND1) to 15 via subcutaneous injection. Next-generation RNA sequencing was performed for the mRNA isolated from the physis. The levels of osteocalcin (OC), growth hormone (GH), and insulin-like growth factor 1 (IGF-1) were measured on PND30 (BPA0.05mg vs. Vehicle; n = 5 for each group). We observed statistically significant enrichment of gene sets in the BPA0.05mg tissues compared with the Vehicle tissues. Further analysis of the differentially expressed genes (DEGs) identified BPA0.05mg-specific networks of secreted proteins (LEP, NPY, AGT, ACE2, C4B, and C4BPA) as well as those of local matrix and protease proteins (FBN2, LAMC2, ADAMTS16, and ADAMTS19). Furthermore, the levels of OC and GH were affected by BPA exposure. Our results revealed the specific molecular characteristics of physis contaminated with BPA and may provide new clues for physis maturation and supervision of industrial products and occupational exposure.

Funder

National Natural Science Foundation of China

China International Medical Foundation

Constructive Project of Flagship Hospital of Integrated TCM with Western Medicine in Children’s Hospital of Fudan University

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3