Nickel chloride induces anticancer biological responses in hepatocellular carcinoma cell lines

Author:

Kahraman Erkan12ORCID,Goker Erdem13ORCID

Affiliation:

1. Research and Application Center of Individualized Medicine, Ege University, Izmir, Turkey

2. Atatürk Vocational School of Health Services, Ege University, Izmir, Turkey

3. Faculty of Medicine, Medical Oncology, Ege University, Izmir, Turkey

Abstract

Nickel has long been known to have a toxic effect in humans and has been defined as a human carcinogen. However, recent studies have suggested that nickel chloride (NiCl2) may also possess anticancer properties. The liver is one of the target organs for nickel, and thus, the present study aims to evaluate the effect of NiCl2 on anticancer biological responses in hepatocellular carcinoma (HCC) cell lines. Both HuH-7, a well-differentiated HCC cell line, and Mahlavu cell line, a poorly differentiated HCC cell line, were exposed to NiCl2. It was determined that NiCl2 decreased cell viability in both cell lines in a dose- and time-dependent manner. Nickel chloride exposure at IC50 doses were observed to suppress the ability of HCC cells to produce colonies and also induce apoptosis of HCC cells by increasing Cleaved Caspase-3 protein levels. It was found that NiCl2 exposure affected cellular morphology, increased the LC3-II protein levels, and induced autophagy in parallel to increased apoptosis in HCC cells. It was also observed that NiCl2 suppressed cell migration, decreased the size and viability of HCC tumor spheroids generated in 3D cell cultures, and disrupted the spheroid structure of the tumor cells depending on E-cadherin expression levels. Furthermore, it was observed that all anticancer biological responses induced by NiCl2 occurred independently of the AKT signaling pathway. In conclusion, our results suggested that NiCl2 induced anticancer biological responses in HCC cell lines. Moreover, this study provided important new molecular and cellular biological basic data about the action mechanisms of NiCl2 in HCC.

Funder

Academic Oncology Association from Turkey

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3