In vitro genotoxicity assessment of biosynthesized zinc oxide nanoparticles

Author:

Demir Abdussamed Yasin1ORCID,Karadayi Mehmet2,Isaoglu Mine3,Karadayi Gokce4,Gulluce Medine2

Affiliation:

1. Department of Medical Genetics, Medical Faculty, Erzincan Binali Yıldırım University, Erzincan, Turkey

2. Biology Department, Faculty of Science, Ataturk University, Erzurum, Turkey

3. Institute of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey

4. Molecular Biology and Genetics Department, Faculty of Science, Ataturk University, Erzurum, Turkey

Abstract

There are various studies on the toxicological potentials of conventionally synthesized zinc oxide (ZnO) nanoparticles, which are useful tools for many medical applications. However, knowledge about the biologically synthesized ones is still limited. In this study, the potential of producing ZnO nanoparticles via a green synthesis method, which enables safer, environmentally, economical and controlled production by using the Symphoricarpos albus L. plant, was investigated. For this purpose, aqueous extract was obtained from the fruits of the plant and reacted with zinc nitrate precursor. Characterization of the synthesized product was carried out by SEM and EDAX analyzes. In addition, the biosafety of the product was also investigated by using the Ames/ Salmonella, E. coli WP2, Yeast DEL, seed germination, and RAPD test systems. The results obtained from SEM studies showed that spherical nanoparticles with an average diameter of 30 nm were synthesized as a result of the reaction. EDAX findings confirmed that these nanoparticles were composed of Zn and O elements. On the other hand, according to the findings of the biocompatibility tests, the synthesized nanoparticle did not show any toxic and genotoxic effects up to a concentration of 640 μg/ml in any of the test systems. Accordingly, considering the findings of our study, it was concluded that the aqueous extract of S. albus fruits can be used for the green synthesis of ZnO nanoparticles, the products obtained successfully passed the biocompatibility tests in our study, and additionally, more comprehensive biocompatibility tests should be performed before industrial scale production.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3