Clastogenic, aneugenic, and tubulin polymerization properties of di-(2-ethylhexyl) phthalate and dibutyl phthalate

Author:

Javaji Kalpana12,Mamilla Jhansi1,Deshpande Shruti S12,Kanaka Raju Y1,Amanchy Ramars12,Misra Sunil12ORCID

Affiliation:

1. Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India

2. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India

Abstract

Phthalate compounds were found to disrupt the endocrine system and alter transcriptomes during human embryonic development. In our previous work, we have isolated and reported two such phthalates di-(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) from Brevibacterium mcbrellneri bacteria and evaluated their bioactive properties. Naturally derived phthalates might be less toxic compared with synthesized molecules. We have investigated biologically isolated phthalates to understand the possible genotoxic effects in mice and further investigated in silico binding and polymerization of β-tubulin. Three sub-lethal concentrations of DEHP (150 μM, 175 μM, and 200 μM) and DBP (10 μM, 15 μM, and 30 μM) were studied. The results showed that the phthalates were found to be highly genotoxic in nature. However, the pattern of genotoxic effects was not found to be dose-dependent in the induction of chromosome aberrations (CA), micronuclei (MN), and changes in the mitotic index (MI) in cells. In silico studies of phthalates on polymerization of β-tubulin suggested that both DBP and DEHP were able to interact with the hydrogen bonds and make strong van der Waals interactions with β-tubulin thereby possibly causing destabilization of microtubule network. Our study suggests that these phthalates might be playing an important role in normal cell division thereby showing highly genotoxic effects.

Funder

Indian Council of Medical Research

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3