Artificial Intelligence-Based Prediction of Lower Extremity Deep Vein Thrombosis Risk After Knee/Hip Arthroplasty

Author:

Wang Xinguang12,Xi Hanxu3,Geng Xiao12,Li Yang12,Zhao Minwei12,Li Feng12,Li Zijian12,Ji Hong3,Tian Hua12ORCID

Affiliation:

1. Department of Orthopedics, Peking University Third Hospital, Beijing, China

2. Engineering Research Centre of Bone and Joint Precision Medicine, Beijing, China

3. Information Management and Big Data Centre, Peking University Third Hospital, Beijing, China

Abstract

Deep vein thrombosis (DVT) is a common postoperative complication of knee/hip arthroplasty. There is a continued need for artificial intelligence-based methods of predicting lower extremity DVT risk after knee/hip arthroplasty. In this study, we performed a retrospective study to analyse the data from patients who underwent primary knee/hip arthroplasty between January 2017 and December 2021 with postoperative bilateral lower extremity venous ultrasonography. Patients’ features were extracted from electronic health records (EHRs) and assigned to the training (80%) and test (20%) datasets using six models: eXtreme gradient boosting, random forest, support vector machines, logistic regression, ensemble, and backpropagation neural network. The Caprini score was calculated according to the Caprini score measurement scale, and the corresponding optimal cut-off Caprini score was calculated according to the largest Youden index. In total, 6897 cases of knee/hip arthroplasty were included (average age, 65.5 ± 8.9 years; 1702 men), among which 1161 (16.8%) were positive and 5736 (83.2%) were negative for deep vein thrombosis. Among the six models, the ensemble model had the highest area under the curve [0.9206 (0.8956, 0.9364)], with a sensitivity, specificity, positive predictive value, negative predictive value, and F1 score of 0.8027, 0.9059, 0.6100, 0.9573 and 0.7003, respectively. The corresponding optimal cut-off Caprini score was 10, with an area under the curve, sensitivity, specificity, positive predictive value, and negative predictive values of 0.5703, 0.8915, 0.2491, 0.1937, 0.9191, and 0.3183, respectively. In conclusion, machine learning models based on EHRs can help predict the risk of deep vein thrombosis after knee/hip arthroplasty.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

SAGE Publications

Subject

Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3