Experimental Study of the Photocatalytic Degradation of Formaldehyde in Indoor Air using a Nano-particulate Titanium Dioxide Photocatalyst

Author:

Yu Huili1,Zhang Kaili2,Rossi Carole3

Affiliation:

1. College of Engineering, Ocean University of China, China

2. LAAS-CNRS, Université de Toulouse, Toulouse, France,

3. LAAS-CNRS, Université de Toulouse, Toulouse, France

Abstract

Formaldehyde in the indoor environment may be degraded using nano-particulate titanium dioxide (TiO2) photocatalysis to improve air quality. In the work described, a polytetrafluoroethylene filter is employed as the substrate for a nano-particulate TiO2 coating. This is mounted in an experimental setup developed for the tests, similar to an actual air purification system, which are conducted at room temperature. The effects on the formaldehyde photocatalytic degradation rate of some key factors are investigated, including initial concentration, stream flow rate, reaction temperature, light source intensity, and relative humidity. Within the experimental ranges studied, the degradation rate increases with the enhancement of initial concentration and light intensity. The stream flow rate and reaction temperature have dual effects on the degradation rate. It is shown that the degradation rate is relatively high under low relative humidity.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3