Heat transfer characteristics of a composite radiant wall under cooling/heating conditions

Author:

Qin S. Y.1,Wang Y. A.12,Gao S.13,Xu D. G.3,Cui X.1,Zhao M.4,Jin L. W.1ORCID

Affiliation:

1. Institute of Building Environment and Sustainable Technology, Xi’an Jiaotong University, Xi’an, China

2. Baidu Era Network Technology Co. Ltd, Beijing, China

3. China Academy of Engineering Physics, Jiangyou, China

4. China Northwest Architecture Design and Research Institute Co. Ltd, Xi’an, China

Abstract

The radiant wall composited with capillary tubes has been widely applied in heating or cooling systems due to its large heat transfer area, low-temperature heating and high-temperature cooling. In this study, a ratio model of heat transfer in steady-state condition was established, which explores heat transfer capacity from the capillary layer (active layer) towards the indoor and outdoor sides. The experimental data including the radiant surface temperature, the capillary layer temperature and the heat flux distribution were collected in cooling and heating conditions. The proposed ratio model was validated. The results show that the fluctuation of indoor air temperature is relatively small, suggesting that the radiant system possesses higher stability. Results showed that thermal resistances of the composite radiant wall in summer and winter conditions vary greatly due to different moisture contents. With the continuation of the system operation, the calculated values from the ratio model under the steady-state condition were more consistent with average values obtained from experiments under unsteady-state conditions, indicating that the overall heat transfer performance of the composite radiant wall could be properly evaluated by the proposed model in engineering applications.

Funder

National Key Research & Development Program of China

Key Scientific Research Innovation Team Project of Shaanxi Province

Scientific and Technological Innovation Project in Shaanxi Province

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3